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Abstract

This paper proposes an inverse strategy for relocation of structural natural frequencies using first order
formulation and solution algorithm. In the proposed method a sensitivity analysis of the systems
eigenvalues with respect to material or geometrical parameters of the structure is conducted initially. The
required parameter variation to achieve a desired frequency shift for the structure is then computed. The
proposed technique incorporates the design constraints or objective functions in the system equations in
such a way that a square system of equations is always preserved. The formulations are general and
applicable to all finite element structures because the sensitivity analysis is based on the stiffness and mass
matrices regardless of the type of elements used. An algorithm suitable for implementation of the technique
for practical purposes is developed. The accuracies of the proposed methods are tested conducting several
case studies and the results are validated against exact solutions.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In optimizing the dynamic behaviour of structures, it is usually required to shift selected natural
frequencies of the system by making modifications to the mass, stiffness or damping
characteristics of the structure. This is particularly important when the structure is susceptible
to detrimental fatigue or dynamic resonance problems, which may violate the design specifications
for strength, stability, or performance requirements. Computation of frequency sensitivities with
respect to design parameters has, therefore, become the basis of many finite element vibration
optimization algorithms.
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The common industrial practise for optimizing the vibration behaviour of structures is based on
performing a series of modifications on the finite element models to achieve the required
eigenfrequencies. This method known as the forward variation approach is time-consuming and
rarely converges to a desired solution. The present scope of inverse eigenvalue formulations of the
vibration problem are predominantly limited to simple linear springs, dampers and point masses.
Little attention has been paid to formulating the inverse eigenvalue problem for two- and three-
dimensional and higher order finite elements, commonly used in simulation of most real
structures. Optimization of vibration characteristics is defined as an inverse eigenvalue problem to
modify the design of the system in order to produce the desired response. The inverse approach
may be used to estimate the required change in the design variables to achieve a desired change in
the natural frequencies of the structure.
The eigenvalue sensitivities in structural design were treated in the past by Belle Van [1] and

Vanhonacker [2] by utilizing the first order Taylor’s series expansion. Others such as Chen and
Garba [3] used the iterative method to modify structural systems. Balmes [4] concentrated on the
error norms between the measured and predicted frequency response function of the structure.
Baldwin and Hutton [5] presented a detailed review of structural modification techniques
classified into categories of the techniques based on small modification, localized modification,
and modal approximation.
Further research on structural modification carried out by Tsuei and Yee [6–8] proposed

methods of shifting the desired eigenfrequencies using the forced response of the system and
modal analysis. The method is based on modification of either the mass or stiffness matrix by
treating the modification of the system matrices as an external forced response. This external
forced response is formulated in terms of the modification parameters, thus creating a modified
eigenvalue problem. Zhang and Kim [9] investigated the use of mass matrix modification to
achieve desired natural frequencies. McMillan and Keane [10] investigated a method of shifting
eigenfrequencies of a rectangular plate by adding concentrated mass elements. Sivan and Ram
[11–13] extended further research on structural modification by studying the construction of a
mass–spring system with prescribed natural frequencies and obtained stiffness and mass matrices
by means of the orthogonality principles. They also developed an algorithm based on an earlier
work by Joseph [14], which involves the solution of the inverse eigenvalue problem.
Also, in the last few years, the work of Gladwell [15] introduced an inverse approach for both

the discrete and continuous structures. Mottershead [16] also considered the problem of resonance
in the structures’ forced vibrations by the design of physical modifications to achieve targeted
natural frequencies. His technique of achieving the required system included structural
modifications through adding concentrated mass or springs to the system. In Ref. [17], He and
Li considered optimizing dynamic behaviour of a multi-body system through modifications in
mass and stiffness matrices. Most of these techniques have thus far been applied to simple mass
and spring systems. The inverse methods presented in this paper have significant advantages over
classical optimization approaches in that there are no iterations involved other than those
associated with numerical solution of equations. In terms of computational processing time the
proposed inverse methods were found to take less than 10 per cent of the time taken when using
the classical optimization algorithms implemented in some of the current FEA commercial codes.
The methods proposed in this paper are extension of earlier work by Djoudi and Bahai [18] and

are based on the differential equation solution and the matrix procedure approach to modify

ARTICLE IN PRESS

K. Farahani, H. Bahai / Journal of Sound and Vibration 274 (2004) 481–505482



stiffness and mass properties of a finite element structure. Both methods are based on the use of
first order expansion approximation of eigenvalues with respect to design variables, and can be
applied to any kind of finite elements including continuum elements. The proposed technique is
implemented in a computer algorithm and applied to a number of case studies, the results of
which reveal good accuracy in a range of engineering problems.

1.1. Preliminaries

Consider the general equation of motion of a structure:

½M�f .Ug þ ½C�f ’Ug þ ½K�fUg ¼ ff ðtÞg; ð1Þ

where ½K�; ½C�; and ½M� are stiffness, damping and mass matrices respectively. Also, ff ðtÞg and fUg
are time-dependent load and displacement vectors respectively. The systems’ natural frequencies
are determined by solving the eigenvalue equation

f½K� 	 zm½M�gfymg ¼ f0g; ð2Þ

where fymg is the mth eigenvector of the system and zm is its corresponding eigenvalue which is
related to the systems mth natural frequency fm through

zm ¼ ð2pfmÞ
2: ð3Þ

A modification in the systems’ material or geometrical parameters will result in a variation of the
dynamic characteristics of the structure represented by fymg and zm: Therefore, the sensitivity of
the dynamic characteristics of the structure with respect to a given design parameter b; should
initially be established. The design parameter b can be any material or geometric variable of the
structure. The sensitivity analysis is conducted initially by differentiating Eq. (2) with respect to b:

f½K�0 	 z0m½M� 	 zm½M�0gfymg þ f½K� 	 zm½M�gfy0mg ¼ f0g; ð4Þ

where ð Þ0 ¼ @=@b: It is assumed that the eigenvectors are normalized with respect to the mass
matrix ½M� such that

fyig
T½M�fyjg ¼

1; i ¼ j;

0; iaj:

(
ð5Þ

Using Eq. (5) and pre-multiplication of Eq. (4) by fymg
T; the second term will take the form

ðfymg
T: f½K� 	 zm½M�gÞfy0mg which will be zero, because the term in parentheses is actually the

transpose of Eq. (2) which is zero. Re-arrangement of the terms results in

z0m ¼ fymg
Tf½K�0 	 zm½M�0gfymg: ð6Þ

In general, there may be as many as k structural parameters used for dynamic optimization.
Eq. (6) is, therefore, written as

@zm

@bj

¼ fymg
T @½K�

@bj

	 zm

@½M�
@bj

� �
fymg; j ¼ 1;y; k: ð7Þ

It is assumed that the structure has no repeated or equal eigenvalues. In the case of repeated
eigenvalues, problems arise as any linear combination of eigenvectors corresponding to the
repeated eigenvalue is also a valid eigenvector. Therefore, Eq. (6) or (7) can no longer be used for

ARTICLE IN PRESS

K. Farahani, H. Bahai / Journal of Sound and Vibration 274 (2004) 481–505 483



the eigenvalue derivative. In this case, it can be shown that an eigenvalue derivative is the solution
of another subeigenvalue problem [19,20]. Throughout this paper, the vector and matrix
quantities are enclosed in f g and ½ � brackets, respectively, and barred parameters denote the
initial value of the parameters in the initial status of the structure.

2. Approximate solution based on first order differential equation

Eq. (6) can be rearranged to form a first order differential equation:

@zm

@b
þ fymg

T @½M�
@b

fymgzm 	 fymg
T @½K�

@b
fymg ¼ 0 ð8aÞ

with the initial conditions:

zmjb¼ %b ¼ %zm: ð8bÞ

Defining A ¼ fymg
T @½M�

@b
fymg; B ¼ fymg

T @½K�
@b
fymg; and assuming that A and B do not vary with b,

the solution of Eq. (8) can be expressed as

zmðbÞ ¼
B

A
þ
eð	AbÞð	B þ A%zmÞ

A eð	A %bÞ
; Aa0: ð9Þ

Eq. (9) should be solved for b for a desired frequency shift, which is in general a non-linear
equation in terms of b: The accuracy of Eq. (9) will be investigated later through some case
studies. For A ¼ 0; the solution of Eq. (8) is obviously a linear equation.
In the cases where the effect of several parameters on the natural frequency of the structure is

sought, the resulting differential equations will be in the form of

@zm

@bj

þ fymg
T @½M�

@bj

fymgzm 	 fymg
T @½K�
@bj

fymg ¼ 0; j ¼ 1;y; k ð10Þ

with their corresponding initial conditions. It is possible to impose a number of physical
constraints on the structure to reduce the system of equations given in Eq. (10) into a single
equation.

2.1. Method 1: Proportionality constraint for the first order system of differential equations

To reduce the number of differential equations (10) into a single equation, additional
assumptions and constraints are used. For example, it can be assumed that the coefficients of the
equations are constants, corresponding to the current status of the structure. The weighted
relative variation of structural parameters bj can all be proportional to a global variable a:

ðbj 	 %bjÞ
%bj

¼ aoj; j ¼ 1;y; k; ð11Þ

where the parameter a will become the only unknown. The constant weights, oj; are completely
arbitrary and may be adopted from the results of a sensitivity analysis or by using engineering
judgements. If the selection of oj is based on the results of the sensitivity analysis, Eq. (11) will
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take the form

ðbj 	 %bjÞ
%bj

¼ a
@zm

@bj

; j ¼ 1;y; k: ð12Þ

Therefore, since the only unknown is a; the resulting differential equation for the eigenvalue zm

will be

@zm

@a
þ fymg

T @½M�
@a

fymgzm 	 fymg
T @½K�

@a
fymg ¼ 0 ð13aÞ

with initial conditions at a ¼ 0 as

zmja¼0 ¼ %zm: ð13bÞ

In this case, since the only variable is a; the derivative of every scalar, vector, and matrix quantity
X ; with respect to a is

@X

@a
¼

Xj¼k

j¼1

@X

@bj

@bj

@a
¼

Xj¼k

j¼1

@X

@bj

ðoj
%bjÞ: ð14Þ

The above scheme of differentiation will, therefore, have to be used to establish Eq. (13) the
solution of which will then assume the following form:

zmðaÞ ¼
B

A
þ
eð	AaÞð	B þ A%zmÞ

A
; Aa0; ð15Þ

where A ¼ fymg
T @½M�

@a fymg and B ¼ fymg
T @½K�

@a fymg: For the case of A ¼ 0 in Eq. (8) or (13), the
solution will be linear in terms of b or a respectively.

3. Total differential form for the first order approximation

3.1. Method 2: Unconstrained method

As a first order approximate inverse formulation approach, the direct matrix application of
Eq. (6) is used to optimize the dynamical behaviour of structures. The applicability and accuracy
of this approach will be investigated by conducting several case studies. This method, defined as
the first order differential approximation method, can be described as

Dzm ¼
Xj¼k

j¼1

@zm

@bj

Dbj; ð16Þ

where @zm=@bj can be obtained from Eq. (7). As it can be seen, the number of parameters bj to be
modified may be more than the number of frequencies to be optimized. In order to overcome this
problem, Eq. (7) is set up so that the number of frequency changes, Dzj; are equal to the number
of parameters to be changed:

Dzm ¼
Xj¼k

j¼1

@zm

@bj

Dbj; m ¼ 1;y; k: ð17Þ
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The values of Dzm corresponding to the frequencies which are to remain unchanged will simply be
set to zero in Eq. (17). The resulting system of linear equations can now be written as

fDzg ¼ ½S�fDbg ð18Þ

where fDzg and fDbg are the vectors of the required eigenfrequency changes and the unknown
parameter changes respectively. The coefficient matrix ½S� is defined as

Sij ¼
@zi

@bj

; i; j ¼ 1;y; k: ð19Þ

Therefore, a change in structural parameters for a desired change in natural frequencies can be
obtained from Eq. (19) as

fDbg ¼ ½S�	1fDzg: ð20Þ

It is easily seen that the coefficient matrix ½S� is not symmetric. It should be noted that although a
change in any structural parameter bj may cause a change in an eigenvalue zm; in practice only
those parameters to which zm is most sensitive are chosen. These parameters are initially identified
in the sensitivity analysis before the above equations are solved. Naturally, the most sensitive
parameters are those which exhibit the largest first derivatives in the pre-modified status of the
structure given by Eq. (6).

3.2. Method 3: Constrained method based on the optimization of an objective function

It is also possible to solve Eq. (16) with just one frequency shift and several variables, using
additional constraints. These constraints may be chosen, based on engineering judgement and
feasibility of modification on the structure. An objective function may also be defined in terms of
other structural parameters such as volume or mass of the structure.
As an example, if the function to be optimized is the mass of the structure, Eq. (16) must be

solved such that the added mass to the structure is a minimum. Now, assume that Dm is a measure
of the added mass to the structure:

Dm ¼ mðb1; b2;y; bkÞ: ð21Þ

Adopting the Lagrange Multipliers method for the problem, the functional to be minimized is

P ¼ mðb1; b2;y; bkÞ þ l
Xk

i¼1

@zm

@bi

Dbi 	 Dzm

( )
: ð22Þ

Therefore, the following system of equations is arived at:

@P
@bj

¼
@P
@l

¼ 0; j ¼ 1;y; k ð23Þ

or

@mðb1; b2;y; bkÞ
@bj

þ l
@zm

@bj

¼ 0; j ¼ 1;y; k

Pi¼k
i¼1

@zm

@bj

Dbj ¼ Dzm:

8>><
>>: ð24Þ
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Solution of Eq. (24) will give the required amount of variation in the structural variables bj for a
desired eigenvalue shift Dzm; with minimum added mass.

3.3. Method 4: Constrained method based on proportionality

In some engineering problems, the only constraint is the feasibility of the structural
configuration for dynamic optimization. Therefore, introducing additional constraints only for
the purpose of having a sufficient number of equations, may make the problem unnecessarily
more complicated. Instead, as discussed in Section 3.1, it is possible to choose a rational
proportionality criterion to reduce the number of unknowns for a particular kind of problem. As
an example, consider a problem in which bj is the thickness of some finite elements. It is possible
to add a weighted proportion aoj to the thickness of all the corresponding elements:

ðbj 	 %bjÞ
%bj

¼ aoj; j ¼ 1;y; k ð25Þ

with a as the only unknown. This results in the single variable equation as

Dzm ¼ a
Xj¼k

j¼1

ð %bjojÞ
@zm

@bj

: ð26Þ

Similarly, it is possible to designate a weight for each thickness proportional to their contribution
to the frequency shift as

ðbj 	 %bjÞ
%bj

¼ a
@zm

@bj

; j ¼ 1;y; k ð27Þ

which again results in the single variable equation in terms of a:

Dzm ¼ a
Xj¼k

j¼1

%bj

@zm

@bj

� �2

: ð28Þ

In Eq. (28), other rational weights could also be used. This approach can be adopted whenever the
number of unknowns is more than the number of equations which is discussed later.

3.4. Method 5: Partially constrained method based on proportionality

This method is used in situations where control over several eigenvalues is desired. The method
is a combination of total differential form of Section 4.1 and the constrained method of Section
4.3. Since the number of variables may be more than the eigenvalues under consideration, they
may be reduced through the proportionality constraints in order to retain the equality between the
number of unknowns and the variables. Hence, the equations can be written as

Dzr ¼
X

j

@zr

@bj

Dbj; r ¼ 1;y; k; ð29Þ
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bj 	 %bj

%bj

¼
Xs¼k

s¼1

asosj; ð30Þ

@zr

@as

¼
X

j

@zr

@bj

@bj

@as

¼
X

j

@zr

@bj

ðosj
%bjÞ; r; s ¼ 1;y; k; ð31Þ

where k is the number of unknowns as; and j can vary up to the number of parameters to be
changed. Again, a decision on the magnitude of the weights, osj; may be made upon engineering
judgement, feasibility, and other limitations. Now, assuming a linear differential approximation
with respect to as; for eigenvalue shifts, one has

Dzr ¼
Xj¼k

j¼1

@zr

@aj

aj; r ¼ 1;y; k: ð32Þ

This will again lead to a system of linear equations in the form of

fDzg ¼ ½S�fag; ð33Þ

where fDzg and fag are, respectively, the vector of constant frequency shifts and the vector of the
required parameter changes. The coefficient matrix ½S� is defined as

Srs ¼
@zr

@as

; r; s ¼ 1;y; k: ð34Þ

Therefore, the change in structural parameters for a desired change in natural frequencies can be
obtained:

fag ¼ ½S�	1fDzg: ð35Þ

Finally, it should be noted that having computed the required changes in the structures’ design
variables, the modifications can be implemented in different ways. For example, the required
additional thickness to a plated structure can be achieved by attaching equivalent stiffeners.

4. Additional members

The first step of the methods presented above involved a sensitivity analysis and also
computation of Eq. (7) for the structure. Using Eq. (7) to find sensitivity is quite fast because it
just requires finding mass and stiffness derivatives at the level of members. The sensitivity analysis
may be extended to consider the addition of new members into the structure. The process is
similar to the case of modifying existing members through the use of Eq. (7). The sensitivity
analysis will establish the position of additional members in the stiffness matrix of the structure
where they will have the maximum influence in achieving the required eigenvalue shift. In this
context, the physical feasibility of the modified structure and geometric limitations are among the
most important constraints.
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5. Case studies

A number of case studies were conducted to demonstrate and validate the accuracy and
applicability of the above techniques on various finite element models.

Example 1. Consider a simply supported two-dimensional (2-D) bridge modelled as a truss
structure as shown in Fig. 1. The model comprises 17 bar elements. The material and geometric
specifications are given in the figure. Three concentrated masses are placed at nodes 3,5, and 7 and
the mass of the truss elements is neglected here. In order to shift the first frequency of the
structure, the following steps are adopted:

(a) Compute the dynamic characteristics of the structure from an initial FEA run.
(b) Find the members to which the first frequency is most sensitive.
Then to shift the first frequency of the truss, change the properties of:
(c) the most sensitive member using the unconstrained total differential form for the first order

approximation (Method 2);
(d) the most sensitive members using the total differential form and a constraint based on

proportionality with equal weights (Method 4);
(e) the most sensitive members using the total differential form and a constraint based on

proportionality with weights equal to their sensitivity (Method 4).

Solution. (a) To find the dynamic characteristics of the initial structure, the ANSYS program was
used.
The first five natural frequencies of the structure are given in Table 1.
(b) To find the most sensitive members, the derivatives of the first frequency with respect to the

cross-sectional areas of all the members are computed from Eq. (7). Since the structure is
symmetric, the results shown in Table 2 relate to only one half of the structure.
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Fig. 1. 2-D truss with concentrated masses: A1 ¼ 250 cm2; A2 ¼ 82:5 cm2; m ¼ 5000 kg; E ¼ 2:1E11 N=m2:

Table 1

Dynamic characteristics

Mode i

1 2 3 4 5

zi 15790 56707 127098 333202 1218025

fi (Hz) 20.0 37.9 56.7 91.9 175.7
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Therefore, elements 10 and 16 are the most sensitive elements.
(c) Since in this example the structure’s mass is constant, then d½M�=dAi ¼ 0 and Eq. (6) will

yield a linear function of eigenvalue with respect to design variables. Since members 10, and
symmetrically 16, have more influence on the first frequency, it is assumed that their cross-
sectional areas will be varied by an equal amount. Hence,

Dz1 ¼ 500171ðDA10 þ DA16Þ ¼ 500171ð2� DA10Þ ¼ 1000343DA10 ð36Þ

or, according to the initial conditions shown in Table 1:

z1 ¼ 1000343ðA10 	 82:5� 10	4Þ þ 15790: ð37Þ

Fig. 2 shows percentage of frequency shift versus percentage of area change, computed exactly
using ANSYS and approximately using Eq. (37). Fig. 3 shows the percentage error in computing
frequency shift using Eq. (37).
(d) From Table 3, elements 5, 6, 10, 7, 8, and 16 are chosen to be modified using the

proportionality rule:

ðAi 	 %AiÞ
%Ai

¼ a; i ¼ 5; 6; 7; 8; 10; 16: ð38Þ

Since mass matrix is constant, from Eq. (13)

@z1
@a

¼ fy1g
T @½K�

@a
fy1g; ð39Þ

ARTICLE IN PRESS

Table 2

First eigenvalue sensitivity

Elem. j

1 2 5 6 9 10 11 12 13

Aj 250 250 250 250 82.5 82.5 82.5 82.5 82.5

dz1=dAj 11961.0 11961.0 49322.1 57963.2 40490.1 500171.4 0.2 6442.3 24579.5

0.0

1.0

2.0

3.0

4.0

0.0 4.0 8.0 12.0 16.0
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%
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Fig. 2. Comparison of exact method and Method 2 for the first frequency shift by members 10 and 16: —, exact; - - -,

approximate.
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where

@½K�
@a

¼
X

i

@½K�
@Ai

@Ai

@a
¼

X
i

%Ai

@½K�
@Ai

: ð40Þ

The stiffness matrix ½KðiÞ� for the ith element is defined as

½KðiÞ� ¼
EiAi

Li

C2 CS 	C2 	CS

CS S2 	CS 	S2

	C2 	CS C2 CS

	CS 	S2 CS S2

2
6664

3
7775; ð41Þ

where E; A; and L denote modulus of elasticity, cross-sectional area and the length of the
elements respectively. C and S are, respectively, the cosine and sine of the angle of the member
orientation with the global co-ordinate axis. Therefore, @½K�=@Ai and consequently @½K�=@a may
be easily computed from Eq. (41). Hence, using Eqs. (39)–(41) one arrives at

z1 ¼ 13617aþ 15790: ð42Þ

Fig. 4 shows percentage of frequency shift versus percentage of area change (which is 100aÞ;
computed using ANSYS and from Eq. (42). Also Fig. 5 shows the error percentage in computing
frequency shift using Eq. (42). It is noted that the percentage of error is considerably reduced in
this case where the changes are less local.
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Fig. 3. Percentage error of Method 2 for the first frequency shift by members 10 and 16.

Table 3

Normalized proportionality weights

Elem. j

5 6 7 8 10 16

oj 0.099 0.116 0.116 0.099 1 1
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(e) In a similar way as in part (d), elements 5, 6, 10, 7, 8, and 16 are chosen to be changed
proportionally according to their contribution to the frequency shift as

Ai 	 %Ai

%Ai

¼
@z1
@Ai

a; i ¼ 5; 6; 7; 8; 10; 16; ð43Þ

@½K�
@a

¼
X

i

@½K�
@Ai

@Ai

@a
¼

X
i

%Aioi
@½K�
@Ai

;

where the weights are normalized with respect to maximum sensitivity shown in Table 3:

oi ¼
@z1
@Ai

� �
@z1
@A10

� ��
:

Therefore the following equation is arrived at in a similar manner to the previous part of the
example:

z1 ¼ 8832aþ 15790: ð44Þ

Comparison of this equation with the exact solution and its percentage error are shown in
Figs. 6 and 7 respectively.

Example 2. Consider the same simply supported 2-D truss structure shown in Fig. 8. In this
example the structure has no concentrated mass and the mass of the members are to be taken into
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Fig. 4. Comparison of exact method and Method 4 with unit weights: —–, exact; - - -, approximate.
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Fig. 5. Percentage error of Method 4 for the first frequency shift.
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account. The material and geometric specifications are given in the figure. The first frequency of
the structure will be shifted again.
The consistent mass matrix will be used for the truss members i:

½MðiÞ� ¼
riAiLi

6

2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

2
6664

3
7775 ð45Þ

ARTICLE IN PRESS

0.0

1.0

2.0

3.0

4.0

0.0 5.0 10.0 15.0

% Area Change
%

 F
re

qu
en

cy
 s

hi
ft

Fig. 6. Comparison of exact method and Method 4 with sensitivity weights for the first frequency shift: —–, exact; - - -,

approximate.
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Fig. 7. Percentage error of Method 4 for the first frequency shift.

Fig. 8. 2-D truss with consistent mass: A1 ¼ 250 cm2; A2 ¼ 100 cm2; r ¼ 2880 kg; E ¼ 2:0E11 N=m2:
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from which @½M�=@Ai is known. To shift the first frequency the following steps are carried out:

(a) compute the dynamic characteristics of the structure;
(b) find the members most effective to a change in the first frequency.
Then to shift the first frequency of the truss, change the properties of:
(c) the most sensitive member using the first order differential equation approach (Method 1);
(d) the most sensitive members using the proportionality constraint for the first order system of

differential equations (Method 1);
(e) the most sensitive member using the total differential form for the first order approximation

(Method 2);
(f) the most sensitive members with equal proportions using the total differential form for the

first order approximation (Method 4);
(g) the most sensitive members, constrained with minimum change in structural mass (Method 3).

Solution. (a) To find the dynamic characteristics of the structure, ANSYS program is used. The
first five natural frequencies of the structure are presented in Table 4.
(b) To find the most sensitive members, the derivative of the first frequency with respect to all

the members’ cross-sectional areas, are computed from Eq. (7). Since the structure is symmetric
the results for only one half of the structure are shown in Table 5.
It is observed that the elements 10 and 16 are the most sensitive elements. It is also noted that

some of the derivatives are negative. This implies that in those members, the additional stiffness
gained from increasing their cross-sectional area in order to increase the frequency, is less than the
influence of their added mass in decreasing the frequency.
(c) Now focussing on members 10 and 16 and equating their respective cross-sectional areas,

A10 ¼ A16; one has

dz1
dA10

¼
@z1
@A10

þ
@z1
@A16

dA16

dA10
¼ 2

@z1
@A10

: ð46Þ
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Table 4

Dynamic characteristics

Mode i

1 2 3 4 5

zi 15796 83311 135637 270344 886489

fi (Hz) 20.0 45.9 58.6 82.8 149.9

Table 5

Eigenvalue sensitivity

Elem. j

1 2 5 6 9 10 11 12 13

Aj 250 250 250 250 100 100 100 100 100

dz1=dAj 	10813 	77940 27647 	25032 34463 347683 	33112 	98508 	70429
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According to Eq. (8)

dz1
dA10

¼ 2fy1g
T @½K�

@A10
	 z1

@½M�
@A10

� �
fy1g or z01 ¼ 747779	 3:318z1;

z1jA10¼0:01 ¼ 15796;

8><
>: ð47Þ

which results in

z1 ¼ 2:2536� 105 	 2:1664� 105e	3:318A10 : ð48Þ

Figs. 9 and 10, respectively, show percentage of frequency shift and error versus percentage of
area change, compared with the exact solution obtained from the ANSYS program.
(d) It is now assumed that elements 2, 3, 10, 12, 13, 14, and 16 are targeted for modification in

order to increase the first eigenfrequency of the structure. Also, equal percentage area change for
all the selected elements is assumed. Therefore,

Ai 	 %Ai

%Ai

¼ oi a; i ¼ 2; 3; 10; 12; 13; 14; 16; ð49Þ

where oi ¼ 1 ði ¼ 10; 16Þ; and oi ¼ 	1 ði ¼ 2; 3; 12; 13; 14Þ: These weights are chosen due to the
fact that elements 10 and 16 have a positive effect on the first frequency change while the others
have a negative effect. It is assumed that decreasing cross-sectional areas does not violate strength
and stability requirements of the structure.
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Fig. 9. Comparison of exact method and Method 1 for the first frequency shift (Fig. 8): —–, exact; - - -, approximate.
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Fig. 10. Percentage error of Method 1 for the first frequency shift (Fig. 8).
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Now, from Eq. (14) one has

@X

@a
¼

X
i

@X

@Ai

@Ai

@a
¼

X
i

@X

@Ai

oi %Ai: ð50Þ

Combining Eqs. (13) and (15) yields the following differential equation:

@z1
@a

þ fy1g
T @½M�

@a
fy1gz1 	 fy1g

T @½K�
@a

fy1g ¼ 0 or z01 ¼ 705513	 26:16z1;

z1ja¼0 ¼ 15796:

8<
: ð51Þ

The solution of Eq. (51) is

z1 ¼ 26972	 11176:2e	26:157a: ð52Þ

Fig. 11 shows percentage of approximate and exact frequency shifts versus percentage of area
change. Fig. 12 shows percentage of error in the approximate frequency shift versus percentage of
area change.
(e) Modifying the cross-sectional areas of members 10 and 16 only, one has

Dz1 ¼ 347683ðDA10 þ DA16Þ ¼ 347683ð2� DA10Þ ¼ 695365DA10 ð53Þ

which gives rise to the following equation:

z1 ¼ 695365ðA10 	 0:01Þ þ 15796: ð54Þ

Figs. 13 and 14 show, respectively, percentage of frequency shift and error versus percentage of
area change, computed exactly using ANSYS and approximately using Eq. (54).
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Fig. 11. Comparison of exact method and Method 1(Fig. 8): —–, exact; - - -, approximate.
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Fig. 12. Percentage error of Method 1 (Fig. 8).
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(f) Again, oi ¼ 1 ði ¼ 10; 16Þ; and oi ¼ 	1 ði ¼ 2; 3; 12; 13; 14Þ; and other weights are set equal
to zero. Using Eqs. (49) and (50)

z1 ¼ 13525aþ 15796 ð55Þ

is arrived at.
Similarly, Figs. 15 and 16, respectively, show the percentage of frequency shift and its

percentage error using Eq. (55).
(g) Elements 2,3,10,12,13,14, and 16 are selected to be modified, to achieve a shift in the first

frequency, such that the variation in mass is a minimum (Method 5). A measure of the structural
mass variation can be expressed as

Dm ¼
X

i

fLiðAi 	 %AiÞ
2g; i ¼ 2; 3; 10; 12; 13; 14; 16; ð56Þ

where the density r is taken as constant for all the members. It is assumed the structure retains its
geometrical symmetry after modification. Therefore, one has

Dm ¼ 2 7:5ðA5 	 0:0250Þ2 þ 7:906ðA10 	 0:00825Þ2 þ 8:5ðA12 	 0:00825Þ2
�

þ 1
2
5:0ðA13 	 0:00825Þ2

�
: ð57Þ
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Fig. 14. Percentage error of Method 2 (Fig. 8).
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Fig. 13. Comparison of exact method and Method 2 (Fig. 8): —–, exact; - - -, approximate.
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The equation for the eigenvalues shift will be

Dz1 ¼
X

i

@z1
@Ai

DAi; i ¼ 2; 3; 10; 12; 13; 14; 16: ð58Þ

Hence, using Eqs. (22) and (23), the cross-sectional areas in terms of first frequency shift
will be:

A2 ¼ 	9:146� 10	7Dz1 þ 0:0250;

A10 ¼ 1:230� 10	6Dz1 þ 0:00825;

A12 ¼ 	3:276� 10	7Dz1 þ 0:00825;

A13 ¼ 	3:971� 10	7Dz1 þ 0:00825;

l ¼ 5:638� 10	11Dz1:

8>>>>>><
>>>>>>:

ð59Þ

The above results show element 10 as the most sensitive element, as expected. Therefore, Eq. (59)
will give approximately the required modified cross-sectional areas in order to achieve the
required shift in the first frequency of the structure, with minimum change in the structural
mass.

Example 3. As the last example, consider the 2-D arch shown in Fig. 17. The structure consists of
24 plane stress elements with 30 translational degrees of freedom. The initial thickness of the arch
is 30 cm and the material and geometric properties are given in the figure. The sensitivity analysis
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Fig. 15. Comparison of exact method and Method 4 (Fig. 8): —–, exact; - - -, approximate.
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Fig. 16. Percentage error of Method 4 (Fig. 8).
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is again performed on the first frequency of the structure. The consistent mass matrix will be
applied for the finite elements. It is necessary to:

(a) Find the members to which the first frequency is more sensitive.
Change the properties of:
(b) the most sensitive members by establishing a first order differential equation for the frequency

(Method 1);
(c) the most sensitive members with equal changes using the total differential form (Method 4);
(d) the most sensitive members to increase the second frequency such that the first frequency

remains unchanged using the partially constrained total differential form (Method 5);
(e) finally, find a suitable position to add a massless bar element, which makes the most

contribution to the first and also the second eigenfrequency. The bar element is assumed to
have a modulus of elasticity E ¼ 2:10Eþ 11 N=m2: The position for the following two
configurations is found: (1) the bar element added in any position: (2) the bar elements length
to lie within an existing element not exceeding the dimensions of any individual existing
triangular finite element.

Solution. (a) Using ANSYS program the first five frequencies were identified. These are given in
Table 6. Also, Tables 7 and 8 show the sensitivity of the first two frequencies with respect to
members’ thickness respectively. Fig. 18 shows the first two mode shapes.
(b) Assuming equal relative change in the members thickness, but assigning a negative sign for

members with negative dz1=dti; one has

ðti 	 %tiÞ
%ti

¼ oia; i ¼ 2; 4; 11; 12; 15; 16; 22; 24; ð60Þ

where oi ¼ 1 ði ¼ 2; 4; 22; 24Þ; and oi ¼ 	1 ði ¼ 11; 12; 15; 16Þ:
Therefore, from Eqs. (13) and (14)

z01 ¼ 79631þ 0:336z1;

z1ja¼0 ¼ 198590

(
ð61Þ
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Fig. 17. A 2-D plane stress arch structure: E ¼ 1E10 N=m2; r ¼ 2500 kg=m3; n ¼ 0:25; t ¼ 30 cm:

K. Farahani, H. Bahai / Journal of Sound and Vibration 274 (2004) 481–505 499



is arrived at, which gives rise to an equation for eigenvalue change in terms of proportionality
factor a:

z1 ¼ 	237200þ 435791e0:336a ð62Þ

Figs. 19 and 20 show the comparison and accuracy of the approach.
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Table 6

Natural frequencies

Mode i

1 2 3 4 5

zi 198590 388383 1023320 1372854 2801953

fi (Hz) 70.93 99.19 161.00 186.48 266.41

Table 7

First eigenvalue sensitivity

Mem. j

2 4 11 12 15 16 22 24

dz1=dtj 61376 81799 	44391 	56270 	44391 	56270 61376 81799

Table 8

Second eigenvalue sensitivity

Mem. j

1 3 11 12 15 16 21 23

dz2=dtj 149351 61969 	109910 	96791 	109910 	96791 149351 61969

Fig. 18. The two first shape modes: (a) first shape mode; (b) second shape mode.
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(c) Again, setting oi ¼ 1 ði ¼ 2; 4; 22; 24Þ; and oi ¼ 	1 ði ¼ 11; 12; 15; 16Þ with other weights
equal to zero, and using Eqs. (49) and (50),

z1 ¼ 146301aþ 198590 ð63Þ

is arrived at.
Figs. 21 and 22 show the variation and accuracy of the approach.
(d) Noting the values of sensitivities given in Tables 7 and 8, two independent variables a1 and

a2 are chosen to describe the members’ thickness change corresponding to the first and second
modes respectively. Table 9 shows the assumed weights for each member and for each mode. The
absolute values of weights are chosen according to the contribution of each member to the
frequencies shift, and their signs are governed by whether the contribution is positive or negative.
Hence, 12 members are chosen to vary in a way that the second frequency increases, while the first
frequency is fixed.
The application of Eqs. (30)–(35) will result in the following derivatives:

@z1
@a1

¼ 98432;
@z1
@a2

¼ 120613;
@z2
@a1

¼ 119433;
@z2
@a2

¼ 310904: ð64Þ

Therefore, Eqs. (56) give rise to the following system of linear equations:

Dz1 ¼ 98432a1 þ 120613a2;

Dz2 ¼ 119433a1 þ 310904a2:

(
ð65Þ
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Fig. 19. Comparison of exact method and Method 1 (Fig. 17): —–, exact; - - -, approximate.
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Fig. 20. Percentage error of Method 1 (Fig. 17).
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Therefore, the unknowns as and consequently thickness changes are obtained from

a1 ¼ 1:919� 10	5Dz1 	 7:446� 10	6Dz2;

a2 ¼ 	7:374� 10	6Dz1 þ 6:077� 10	6Dz2:

(
ð66Þ

Now, assuming Dz1 ¼ 0; Table 10 shows some of as s and the required percentage change of
elements’ thickness Dti; in order to shift the second frequency whilst keeping the first frequency
fixed. The table also includes the percentage error of the second frequency shift, Err Df2; and the
percentage of unwanted shift in the first frequency. These results show an acceptable level of
accuracy for practical purposes.
It can be seen from these results that a shift of 5.6% in the second frequency can be realized

with an error of 4.8% with an induced change in the first frequency of only 	0:42%: The
maximum and minimum thickness changes occur in elements 1 and 4 respectively. Element
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Fig. 21. Comparison of exact method and Method 4 (Fig. 17): —–, exact; - - -, approximate.
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Fig. 22. Percentage error of Method 4 (Fig. 17).

Table 9

Assumed weights for various members and modes

i

1 2 3 4 11 12 15 16 21 22 23 24

o1i 0.21 0.61 0.20 0.82 	0.44 	0.56 	0.44 	0.56 0.21 0.61 0.20 0.82

o2i 1.50 0.61 0.62 0.19 	1.10 	0.97 	1.10 	0.97 1.50 0.61 0.62 0.19
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number 1 exhibits an increase in thickness of 34%, whilst the thickness of element 4 is decreased
by about 22%.
(f) Finally, we locate the optimum position is located for addition of new bar elements into the

structure for maximum contribution to the first and second frequencies. To this end, by
computing Eq. (7) for every possible configuration, we locate the positions whose sensitivities are
maximum for addition of new bars are located, as illustrated in Fig. 23. Fig. 23(a) shows the
optimum positions whilst Fig. 23(b) shows the position where the bar elements have been adjusted
in order to fit within the boundaries of the existing elements. The values of @z=@A are shown in the
figures for each configuration.
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Table 10

Results and errors of partially constrained method (Method 5)

a1 a2 %Dt1 %Dt2 %Dt3 %Dt4 %Dt11 %Dt12 %Df1 %Df2 %Err Df2

	0.074 0.061 7.6 	0.8 2.3 	5.0 	3.4 	1.7 	0.03 1.3 1.0

	0.149 0.122 15.1 	1.7 4.6 	9.9 	6.8 	3.4 	0.09 2.5 2.6

	0.186 0.152 18.9 	2.1 5.7 	12.4 	8.5 	4.3 	0.14 3.1 3.0

	0.261 0.213 26.4 	2.9 8.0 	17.3 	11.9 	6.0 	0.26 4.4 4.1

	0.335 0.273 34.0 	3.8 10.3 	22.3 	15.3 	7.8 	0.42 5.6 4.8

Fig. 23. Additional bar elements for maximum contribution to the first and second frequencies: (a) optimum positions;

(b) additional bars adjusted to fit within the existing elements.
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6. Conclusions

The paper presents inverse formulations of eigenvalue problem to optimize the dynamic
behaviour of structures. After finding the sensitivity of eigenvalues with respect to design
parameters, the desired values of frequency shifts for the structure are determined. This has been
done through the establishment of differential equations or linear system of equations, both based
on first order expansion approximation of eigenvalues with respect to design variables. The
formulations are quite general and applicable to all kinds of finite elements and are suitable for
computer code implementation. The generality comes from the fact that the derivatives with
respect to design variables are performed at the elemental level. Therefore, as long as the element
stiffness and mass matrices derivatives with respect to design variables can be obtained, this
method can be used for dynamic optimization. For more complicated elements such as plate or
shell elements, the mass and stiffness derivatives with respect to design variables can be
numerically calculated. The accuracy of the proposed methods are tested by conducting several
examples and validating the results against exact solutions, all of which reveal an acceptable level
of accuracy for practical purposes. It is observed that for frequency shifts of about 30 per cent, the
error will be less than 9 per cent. One of the advantages of the proposed formulations is that the
sensitivity analysis and modification are conducted locally on specific parts of the structure,
requiring minimal computational effort. This feature allows the formulations to be used in
conjunction with most commercial FEA codes.
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